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Synopsis 

Relationships have been derived between the spreading factor and the respective slopes of actual 
and effective linear calibrations in size-exclusion chromatography. On this basis a new calibration 
prgcedure has been developed for determining simultaneously the dependences of sample molecular 
weight and of the spreading factor on elution volume from chromatograms of polydisperse polymer 
samples with known values of number- and weight-average molecular weight. No assumptions about 
the shape of sample molecular weight distribution are required. If necessary, the calibration de- 
pendences may be further improved by an iteration procedure described. 

INTRODUCTION 

Prior to evaluating the data of size-exclusion chromatography (SEC) in terms 
of correct molecular weight distribution (MWD) and/or average molecular 
weights, it is necessary to determine, for the given combination of columns, the 
relationship between the molecular weight of the polymer and its retention 
volume (molecular weight calibration), and the shape of the spreading function 
G (u ,y ) in the integral (Tung) equation 

(calibration for axial spreading), where f is the normalized uncorrected chro- 
matogram and w is the chromatogram corrected for zone spreading. Molecular 
weight calibration in SEC with characterized, polydisperse polymer samples is 
a useful alternative to the simplest method, which employs standards with narrow 
molecular weight distribution, in particular when narrow fractions of the polymer 
to be analyzed are not a t  one’s disposal and the universal calibration based on 
commercially available “monodisperse” polystyrene (PS) standards cannot be 
applied either because information on the appropriate Mark-Houwink constants 
is lacking or the mobile phase used is a nonsolvent for PS. 

Many attempts have been undertaken in this area with varying degree of 
success. Some of them1-6 start from the knowledge of cumulative MWD; the 
others require one or more molecular weight averages to be known for all cali- 
bration standards.7-l1 Frank et al.7 proposed a rather cumbersome graphical 
procedure. Balke et a1.8 developed a method for determining the so-called ef- 
fective linear calibration; several alternatives and improvements of their pro- 
cedure have been published.6J2-15 Other investigators attempted to circumvent 
the awkward restriction of linearity by employing more general forms of the 
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log (molecular weight) vs. retention volume dependen~e.~-"J~ These authors, 
however, substituted the experimentally available, uncorrected chromatogram 
f into formulae that are, strictly speaking, valid only for the ideal, spreading- 
corrected function w. In testing the polynomial methods of Vrijbergen et a1.l1 
and Szewczykg on computer-generated data, we confirmed the previous finding12 
that neglecting the axial spreading resulted in a distorted molecular weight 
calibration (see also Ref. 11). Correction for axial spreading has been incorpo- 
rated into the methods developed by Yau et a1.12 and by McCrackin,lo but their 
results are limited to a special form of the dependence log M = g ( u )  (linear in 
Ref. 12; quadratic polynomial in Ref. 10) and/or to calibration standards with 
relatively narrow molecular weight distributions.1° 

In this article (Paper I) a general method is developed for calibrating SEC 
columns by polymer standards having MWD of an arbitrary shape with known 
number- and weight-average molecular weights, M ,  and M,. The method yields 
both the dependence of molecular weight on elution volume as a polynomial of 
statistically correct degree and the dependence of the spreading factor h on 
elution volume, to be used in subsequent corrections for axial spreading of 
chromatograms of unknown samples. Applications of the new procedure are 
described in Paper II.17 

THEORETICAL 

Yau et a1.12 observed that with increasing spreading the effective linear cali- 
bration dependence derived from the chromatogram of a polydisperse polymer 
sample according to Balke et aL8 tends to rotate counterclockwise around an 
anchor point located near the average elution volume (see also Ref. 18). We shall 
first put this observation on a quantitative basis by proving that the abscissa of 
the intercept between the true and effective calibration lines lies very close to 
the first statistical moment (centroid) of the uncorrected chromatogram, and 
derive the relationship between the respective slopes of the actual and effective 
linear calibrations and the spreading factor. On this basis it will be shown how 
to construct an approximate polynomial molecular weight calibration and to 
determine the dependence of the spreading factor on elution volume from un- 
corrected chromatograms of several polydisperse polymer standards with known 
M ,  and M,. The chromatograms can be then corrected for axial spreading and 
subsequently used in an iteration procedure in order to improve the initial es- 
timates of both the molecular weight and spreading calibrations. Similarly to 
the previous methods?-" the proposed procedure involves considerable calcu- 
lation and requires the use of a computer. 

Intercept of Actual and Effective Linear Calibrations 

Let f ( u )  and w ( u )  be the respective uncorrected and corrected chromatograms 
of a polydisperse polymer standard characterized by known values of M ,  and 
Mtu. At first let us assume that the actual (as yet unknown) calibration depen- 
dence of the given combination of SEC columns is linear: 

(2) 

M ,  = eA*/ . fe-B*Uw(u) du (3a) 

In M = A* + B*u 
It is known that in this case it holds for the averages M ,  and M,. 
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M ,  = eA* - JeB*uw(u)du (3b) 
Following Balke et a1.F we define the constants A and B of effective linear cali- 
bration 

In M = A + Bu (4) 

such that 

M ,  = eA/Se-Buf(u)du 

M ,  = eA SeBuf(u) du (5b) 

(B  and B* are both negative). 
As M,, M,, andf(u) are known, eqs. (5) can be always solved for the constants 

A and B;  a very rapid iteration procedure is described in Appendix A. Accord- 
ingly, throughout the following development we shall consider A and B as 
known. 

Assuming for simplicity that the kernel G(u,y) in Tung integral equation (1) 
is Gaussian, 

G(u,y) = ( h / ~ ) l / ~  exp[-h(u - Y ) ~ ]  (6) 
(where h is the spreading factor), we can evaluate the integrals Se*Buf(u) du in 
eqs. (5) by substituting for f ( u )  from eq. (l), using eq. (6 ) .  We have 

S_le*Buf(u) du = J-: e*Budu J-1 m e x p [ - h ( u  - y)21w(y)dy 

The integral over u can be evaluated analytically, and the result is 

S_, e*BUf(u) du = exp(B2/4h) S_, e*BYw(y)dy (7) 

Substitution into eqs. (5) gives for the number and weight averages 

(84 exp(A - B2/4h) - - exp(A*) M ,  = S exp(-By)w(y)dy Sexp(-B*y)w(y) dy 

M ,  = exp(A + B2/4h) J exp (By)w dy 

=eA* JeB*Yw dy (8b) 

where the integrals contain the as-yet unknown function w. However, in a 
completely analogous manner it can be shown that 

S_, e*B*uf(u)du = exp(~*2/4h) S_: e*B*Yw(y)dy (9) 

Using (7) and (9) it is now possible to write, instead of eqs. (8), 

e A - - exp(A* + B*2/4h) 
J exp(-Bu)fdu exp(-B*u)fdu 

M ,  = 

and 

M, = eA JeBufdu = exp(A* - B*2/4h) JeB*Ufdu (lob) 
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where the integrals now contain the experimentally available uncorrected 
chromatogram. 

The spreading factor can be eliminated from eqs. (lo), and we may write 

e(A*-A) .fe-BUf du = e(A-A*) JeBufdu 
Se-B*uf du . feB*uf du 

Now, A and B will be certainly close to their starred counterparts, so that it is 
possible to expand both sides of eq. (11) into a Taylor series in variables A and 
B around the point ( A  = A*, B = B*) and retain only the leading terms. The 
result can be written in the form 

B*-B = 5 [ Se-R*uf du SUeB*uf SeB*uf &,I dl A - A* 1 Sue-B*Ufdu + 

Notice, however, that for the abscissa (say a) of the intercept between the ac- 
tual-eq. (2)-and effective-eq. (4)-calibration lines we have A + BE = A* 
+ B*E or 

(13) ( A  - A*)/@* - B )  = U 

A comparison of the last two equations shows that 

2 Se-B*uf du SueB*uf JeB*uf do dl - u = - [  1 Sue-B*ufdu+ 

This result can be given a more lucid meaning by expansion of the exponentials 
into McLaurin series followed by term-by-term integration; each integral is then 
transformed into an infinite series containing statistical moments about zero 
of the uncorrected chromatogram, 

p i  = Sukfdu (15) 
After an awkward but straightforward algebra that relies on the connection18 
between moments about zero and central statistical moments, 

Pk = S<u - r*’dkfdu (16) 
the result reduces to the form 

Neglecting the higher terms, we have finally 

When actual values of B* and the p’s from experimental chromatograms recorded 
on different column combinations (both in classical and high-speed SEC) are 
inserted into eq. (17), the second term in square brackets always turns out to be 
much smaller than unity; thus, it has been proved that the intercept between 
the actual and effective linear calibrations is very close to the centroid pi of the 
uncorrected chromatogram. 

Now, if chromatograms for a series (i = 1,2,. . . , n,) of polymer samples with 
broad MWD are recorded on a combination of SEC columns, the parameters Ai 
and Bi of the effective calibration lines can be determined for each chromatogram 
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by solving eqs. (5), using the method of Appendix A, and. the first statistical 
moments pi,i can be calculated by numerical integration according to eq. (15). 
Thus, for each sample a single point (pi,i, In Mi) of the actual calibration de- 
pendence sought can be determined from 

In M; = A + B p i , ;  (18) 

These points can be then processed by some standard statistical procedure to 
yield the best-fit functional dependence for the actual calibration, e.g., in the 
form of a polynomial. Henceforth, this procedure will be referred to as the 
method of intercepts. 

Although the derivation of the underlying eq. (17) rests on the assumptions 
that the actual calibration is also linear and that the spreading function is 
Gaussian, it is reasonable to expect that slight deviations from linearity and from 
the assumed shape of G(u,y) will not invalidate the proposed procedure. This 
expectation has been fully confirmed (see Paper 11). A t  any rate, the calibration 
obtained by the above method of intercepts will serve only as the first approxi- 
mation and can be further improved, as shown below. 

Determination of the Spreading Factor 

When eq. (lob) is divided by eq. (lOa), we see that 

JeBUfdu - J e - B u f d u  = exp(-B*2/2h) JeR*ufdu - J e - R * u f d u  

where A and A* have been eliminated. Expanding again the exponentials under 
the integral sign and integrating term by term, we obtain after some manipula- 
tion 

1 + - pi2) + ( ~ 4 / 1 2 ) ( ~ ;  - 4pcL;p; + 3p(2) + ... 
= exp(-B*2/2h) [I + B*2(& - pu’;”) + ( ~ * 4 / 1 2 ) ( ~ . k  - 4pcL;p.$ + 3 p 3  + -1 

which can be written (see Ref. 19) as 

1 -I- B2p2 (B4/12)(p4 + 3p3 
= e~p(-B*~/2h)[ l+  B*2p2 + (B*4/12)(p4 + 3&)] 

When terms containing higher powers of B and B* are neglected, the result re- 
duces to 

(19) 
It is now possible to calculate the spreading factor: B* is taken as the local slope 
of the calibration dependence In M = g(u) (at u = pi),  determined by the method 
of intercepts, and eq. (19) is solved directly for h; the process is repeated for all 
chromatograms and the values hi = h   pi,^) for i = 1,2, . . . , n, are then processed 
statistically to yield a smoothed dependence h(u) in a suitable analytical 
form. 

1 + B2p2 = e ~ p ( - B * ~ / 2 h ) ( l +  B*2p2) 

Methods for Improving the Initial Calibrations 

For relatively narrow calibration standards the curvature of the actual cali- 
bration as well as the elution volume dependence of spreading can be safely ne- 
glected within the volume interval spanned by the sample; in this case the pro- 



2938 KUBfN 

posed method of intercepts will yield a reliable molecular weight calibration, and, 
accordingly, also the spreading factor determined from eq. (19) using the slope 
B* of this function will be correct. However, when only standards with broad 
MWD are available, the inherent assumptions cast some doubt on the accuracy 
of the method of intercepts. Moreover, the number of points on the calibration 
is equal to the number of calibration standards employed (ns),  and this can lead 
to a polynomial of unnecessarily low degree to be accepted by the statistical test, 
owing to a low number of degrees of freedom. In this section, methods are dis- 
cussed that can be used for improving the initial estimates of molecular weight 
and spreading calibrations. 

As soon as the dependence h(u) is known (see the previous section), all chro- 
matograms can be corrected for imperfect resolution by solving the Tung 
equation (1) by means of some rapid numerical procedure (e.g., Refs. 20 and 21). 
Second central moments v2 of the corrected chromatograms are then calcu- 
lated, 

(20) 

(21) 
derived in Ref. 22. 

We may then assume that, within the interval of elution volume spanned by 
two adjacent chromatograms, the calibration dependence can be adequately 
represented by a second-degree polynomial 

In M = a + bu + cu2 (22) 
The three coefficients a ,  b ,  c are found by solving numerically the appropriate 
equations derived from eq. (22) for the number and weight averages, M,, and Mu,, 
of the two calibration standards in question: 

e a  

~2 = J(u - F U ; ) ~ W ( U )  du 

~2 = p2 - 1/2h 
and improved values of h are determined from the equation 

Mnri = JWi(u)e-bu-cu2dU 

Mw,i = e a  - Jwiebu+cu2du 

Mw,i+l = e a  - Jwi+lebu+cu2du 
where the indices i and i +1 refer to two adjacent chromatograms of calibration 
standards, ordered according to increasing values of average M .  A rapid iteration 
procedure for solving these equations for a ,  b,  and c is described in Appendix 
B. 

A number of points (u j ,  In M i )  are then calculated from eq. (22) with a set of 
elution volumes v, selected from the interval covered by significant portions of 
the two chromatograms [excluding their tails, where eq. (22) can deviate from 
the true course] and stored for further use. The process is repeated with the next 
pair of adjacent chromatograms until all (n, - 1) pairs have been exhausted. All 
points thus obtained are then used together for calculating the coefficients of 
a best-fit polynomial of statistically significant degree, as the number of points 
is no longer restricted to the number of chromatograms and can be as high as 
convenient. 
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1;;ri  ; 1 t o n s  : I Read i n  data  

C a l c u l a t e :  p i  , p2 - Eqns ( 1 5 ) .  ( 1 6 ) ;  

, B, - A p r e n d ~ x  A . Deternrine  n 

points of c a l i h r a t i o n  - Ecin ( 1 8 )  * 
Approximate p ( v )  hy ~ ~ o l y n o m i a l ,  

s t a r e  a s  temporary c a l i h r a t i o n  

I F o r  i = I t o n ;  : 

I 1 C a l c u l a t e  slopes B* r r G m  tercnoram 

c n l i h r a r i o n ,  s o l v e  ( I Y )  f o r  hi 

For i = 1 t o  II : 

Correct chromato~rams ri th 

ner h ( v ) .  c a l c u l a t e  Mn , Mk 
1 

F i t  s a t i s f a c t o r y  ? 

"" \-e5 

c 
For  i : 1 t o  n : 

c ; l i c u l a t e  a ,  1,. c from p a i r s  of 

citromatoprams (A?pendix B) ; 
f o r  each  pair calcil late 

4 o , ' ( n , - 1 \  -o in ts  o f  c a l i h r a t i o n  

J/ 
Approximate a( . )  by polynomial .  

store as temporary c a l i h r a t i o n  

Fig. 1. Flow chart of the program (schematical). 
By using the new polynomial calibration thus obtained, the number and weight 

average molecular weights are calculated for each sample and compared with 
the known values. If the fit is not satisfactory, an iteration loop can be initiated 
wherein the slope B* calculated from the improved polynomial a t  the centroid 
of each chromatogram is inserted into eq. (19) together with the corresponding 
variance, new values of the spreading factor are determined, etc. This method 
will be referred to in Paper I1 as iteration procedure. A flow chart of the computer 
program devised to handle these calculations is shown in Figure 1. 

The procedures described in this paper could be easily modified for the case 
when other two averages, e.g., M ,  and the viscosity average M,, are known for 
some or all calibration standards, but they would then require the knowledge 
of the appropriate Mark-Houwink constants for the polymer in the mobile phase 
employed. 

No assumption about the shape of sample MWD has been introduced in the 
development of the calibration methods described; accordingly, both should work 
equally well with standards having unimodal and multimodal distributions. 
Their application to artificial (computer-generated) and experimental chro- 
matograms is described in Paper 11. 

APPENDIX A 
An efficient iteration process devised for solving eqs. (5) can be described as follows. First divide 

(M, /Mn)  = j e B u f ( u ) d u .  j e -B" f (u )do  (24) 

(5b) by (5a) to eliminate A: 

This equation is valid for the correct value of B. With B variable we may write 



= P(B)  * Q ( R )  

where 

P ( B )  = SeRuf du 

and 

Q ( B )  = Je-BU/du 

It is readily seen that 

AX = [ Q ( d P / d B )  + P ( d Q / d R ) ] A A  

If Bk represents the'value of B at  the kth iteration step, we may write 

Solving for Bk+l, we obtain the iteration formula 

where we have defined for simplicity 

and 

The quantities P, Q ,  P I ,  and Q1 can be easily calculated by numerical integration from eqs. (251, (26), 
(29), and (30). As soon as B is determined with sufficient precision (convergence of the product 
P-Q to the known ratio Mw/Mn is a suitable stopping criterion), A is calculated as the mean of two 
values obtained by inserting the final B into eqs. (5a) and (5b). The initial value Ro for the first 
chromatogram is estimated as the slope of the straight line joining the points,[&, In (MnMu,)1 /2]  
corresponding to the first two calibration standards; for subsequent samples the final value of R 
arrived a t  with the previous chromatogram is used as the initial estimate. 

The method proved to be almost 10 times as rapid as the iteration procedure described in Ref. 
11: three to four steps have been sufficient in most cases. 

APPENDIX B 

Equations (23) can be solved iteratively by a generalization of the procedure described in Appendix 
A. Let (Mw/Mn)i  be the ratio of known averages for the ith sample and wi the corresponding cor- 
rected chromatogram. From eq. (23) we have 

(Mw/M,,)i = Jebu+cu2wi(u)du.  Se-bU-Cu*wi(u)du 

and 

(Mw/Mn)i+l  = Jebu+cu2wi+l du . Se-hu-cu2wi+l dv  

and the parameter a has been eliminated. Similarly as in eq. (27), we write 

(Mw/Mn)i -PiMi = (RiMi + LiPi)(bk+l - bk) + (SiMi + KiPi)(Ck+l- c k )  (31) 

(Mw/Mn)i+l - P i + l M i + ~  = (Ri+lMi+1+ Li+lPi+l)(bk+l-  bk) 
+ (Si+lMi+l + Ki+lPi+l)(ck+l - c k )  (32) 

where the quantities in eqs. (31) and (32) are defined by the integrals 

Pi = J exp(bku + cku2)widu 
Mi = s eXp(-bkU - cku2)widu 
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Si = 1251 = .fu2exp(bku 4- Cku2)WidU 
dC bh,Ck 

Li = l M i l  = -.fuexp(-bkv - CkU2)WidU 
db bk,Ck 

Ki = 13M,I = -.fu2exp(-bku - cku2)widu 
dC bb,Ck 

and similarly for (i + 1); bk and Ck are the values of b and c at  the kth iteration step. 
Solving eqs. (31) and (32) for bk+l and C k + l ,  we arrive at  two iteration formulae in the form 

(33) 
x2z1- X l Z Z  X1Y2 - X z y l  

d 9 Ck+l=ck + 
d 

bk+l  = bk + 

with 

X I ' =  (Mw/Mn)i -Mipi, 
y1 = MiRi + PiLi, 

21 = MiSi + PiKi, 

~2 = (Mw/Mn)i+l- Mi+lPi+l 
Y Z  = Mi+lRi+l+ Pi+lLi+l 
zz = Mi+lSi+1+ Pi+lKi+l 

d = Z ~ Y Z  - z z ~ i  
Twelve integrals must be evaluated numerically, but the process described by formulae (33) 

converges very rapidly, and no more than three iterations are normally needed to attain an agreement 
between the calculated and known values of both ratios M,/Mn within 0.005. The coefficient a 
is again determined as the mean of four values obtained by inserting the final values of b and c into 
eqs. (23). 
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